育德园师微信公众号
每日推送精彩考试报考
长按二维码识别
微信搜索“育德园师课堂”
育德园师客户端
报考,试题,视频一手掌握
生:从表中可以看出A、B两个正方形的面积之和等于正方形C的面积。并且,从图中可以看出正方形A、B的边就是直角三角形的两条直角边,正方形C的边就是直角三角形的斜边,根据上面的结果,可以得出结论:直角三角形的两条直角边的平方和等于斜边的平方。
第二个环节:证明勾股定理的教学
教师给各小组分发制作好的直角三角形和正方形纸片,先分组拼图探究,再交流、展示,让学生在实践探究活动中形成新的能力(试图发现拼图和证明的规律:同一个图形面积用不同的方法表示)。
学生展示略
第三个环节:运用勾股定理的教学
师:右图是由两个正方形组成的图形,能否剪拼为一个面积不变的新的正方形,若能,看谁剪的次数最少。
生:可以剪拼成一个面积不变的新的正方形,设原来的两个正方形的边长分别是a、b,那么它们的面积和就是a2+b2,由于面积不变,所以新正方形的面积应该是a2+b2,所以只要是能剪出两个以a、b为直角边的直角三角形,把它们重新拼成一个面积为a2+b2的正方形就行了。
第四个环节:挖掘勾股定理文化价值
师:勾股定理揭示了直角三角形三边之间的数量关系,使数与形密切联系起来。它在培养学
生数学计算、数学猜想、数学推断、数学论证和运用数学思想方法解决实际问题中都具有独特的作用。勾股定理最早记载于公元前十一世纪我国古代的《周髀算经》,在我国古籍《九章算术》中提出“出入相补”原理证明勾股定理。在西方,勾股定理又被成为“毕达哥拉斯定理”,是欧式几何的核心定理之一,是平面几何的重要基础。关于勾股定理的证明,吸引了古今中外众多数学家、物理学家、艺术家,甚至美国总统也投入到勾股定理的证明中来。它的发现、证明和应用都蕴涵着丰富的数学人文内涵,希望同学们课后查阅相关资料,了解数学发展的历史和数学家的故事,感受数学的价值和数学精神,欣赏数学的美。
六、教学设计题(本大题共1小题,30分)
17.请以“函数的单调性”为课题,完成下列教学设计。
(1)教学目标;
(2)教学重点、难点;
(3)教学过程(只要求写出新课导人和新知探究、巩固和应用)。
12.【答案要点】初中数学学段中,安排了四个部分的课程内容:“数与代数”“图形与几何”“统计与概率”“综合与实践”。
“数与代数”的主要内容有:数的认识,数的表示,数的大小,数的运算,数量的估计;字母表示数,代数式及其运算;方程、方程组、不等式、函数等。
“图形与几何”的主要内容有:空间和平面基本图形的认识,图形的性质、分类和度量;
图形的平移、旋转、轴对称、相似和投影;平面图形基本性质的证明;运用坐标描述图形的位置和运动。
“统计与概率”的主要内容有:收集、整理和描述数据,包括简单抽样、整理调查数据、绘制统计图表等;处理数据,包括计算平均数、中位数、众数、极差、方差等;从数据中提取信息并进行简单的推断;简单随机事件及其发生的概率。
“综合与实践”是一类以问题为载体、以学生自主参与为主的学习活动。在学习活动中,学生将综合运用“数与代数”“图形与几何”“统计与概率”等知识和方法解决问题。“综合与实践”的教学活动应当保证每学期至少一次,可以在课堂上完成,也可以课内外相结合。
在数学课程中,应当注重发展学生的数感、符号意识、空间观念、几何直观、数据分析观念、运算能力、推理能力和模型思想。为了适应时代发展对人才培养的需要,数学课程还要特别注重发展学生的应用意识和创新意识。
13.【答案要点】(1)反映数据统计的全过程,发现并提出问题,收集和整理数据、分析数据、做出合理的决策,对结果进行评价、交流与改进;(2)体会抽样的必要性和随机抽样的重要性,体会用样本估计总体的初步思想;(3)根据数据做出推理和合理的论证,并初步学会用概率统计语言进行交流。
_ueditor_page_break_tag_三、解答题
14.解:从展厅正中心到正方形一边的距离为8米,而8=0.5+(0.5+1)×5,所以除去正中间一个大地板砖,还需要再铺5圈小的,5圈大的。
最外一圈需要大地板砖(16-2)×4+4=60;
第二圈的边长为16-1.5×2=13,第二圈需要大地板砖(13-2)×4+4=48;
第三圈需要(10-2)×4+4=36;
第四圈需要(7-2)×4+4=24;
第五圈需要(4-2)×4+4=12。
五圈个数相加,再加上最中间一个,共计60+48+36+24+12+1=181个。
四、论述题
15.【答案要点】
(1)基础知识和基本技能的评价
对基础知识和基本技能的评价,应以各学段的具体目标和要求为标准,考查学生对基础知识和基本技能的理解和掌握程度,以及在学习基础知识与基本技能过程中的表现。在对学生学习基础知识和基本技能的结果进行评价时,应该准确地把握“了解、理解、掌握、应用”不同层次的要求。在对学生学习过程进行评价时,应依据“经历、体验、探索”不同层次的要求,采取灵活多样的方法,定性与定量相结合、以定性评价为主。
(2)数学思考和问题解决的评价
数学思考和问题解决的评价要依据总目标和学段目标的要求,体现在整个数学学习过程中。对数学思考和问题解决的评价应当采用多种形式和方法,特别要重视在平时教学和具体的问题情境中进行评价。
(3)情感态度的评价
情感态度的评价应依据课程目标的要求,采用适当的方法进行。主要方式有课堂观察、活动记录、课后访谈等。情感态度评价主要在平时教学过程中进行,注重考查和记录学生在不同阶段情感态度的状况和发生的变化。
(4)注重对学生数学学习过程的评价
学生在数学学习过程中,知识技能、数学思考、问题解决和情感态度等方面的表现不是孤立的,这些方面的发展综合体现在数学学习过程之中。在评价学生每一个方面表现的同时,要注重对学生学习过程的整体评价,分析学生在不同阶段的发展变化。评价时应注意记录、保留和分析学生在不同时期的学习表现和学业成就。
(5)体现评价主体的多元化和评价方式的多样化
评价主体的多元化是指教师、家长、同学及学生本人都可以作为评价者,可以综合运用教师评价、学生自我评价、学生相互评价、家长评价等方式,对学生的学习情况和教师的教学情况进行全面的考查。
(6)恰当地呈现和利用评价结果
评价结果的呈现应采用定性与定量相结合的方式。第一学段的评价应当以描述性评价为主;第二学段采用描述性评价和等级评价相结合的方式;第三学段可以采用描述性评价和等级(或百分制)评价相结合的方式。评价结果的呈现和利用应有利于增强学生学习数学的自信心,提高学生学习数学的兴趣,使学生养成良好的学习习惯,促进学生的发展。评价结果的呈现,应该更多地关注学生的进步,关注学生已经掌握了什么,获得了哪些提高,具备了什么能力,还有什么潜能,在哪些方面还存在不足,等等。
(7)合理设计与实施书面测验
书面测验是考查学生课程目标达成状况的重要方式,合理地设计和实施书面测验有助于全面考查学生的数学学业成就,及时反馈教学成效,不断提高教学质量。
五、案例分析题
16.【答案要点】第一个环节:教师设计问题情境,让学生探索发现“数”与“形”的密切关联,形成猜想,主动探索结论,训练了学生的归纳推理的能力,数形结合的思想自然得到运用和渗透,“面积法”也为后面定理的证明做好了铺垫,双基教学寓于学习情境之中。
第二个环节:通过小组探究、展示证明方法,让学生把已有的面积计算知识与要证明的代数式联系起来,并试图通过几何意义的理解构造图形,让学生在探求证明方法的过程中深刻理解数学思想方法,提升创新思维能力。
第三个环节:问题是数学的心脏,学习数学的核心就在于提高解决问题的能力。教师在此设置问题不仅是检验勾股定理的灵活运用,更是对勾股定理探究方法和证明思想(数形结合思想、面积割补的方法、转化和化归思想)的综合运用,从而让学生在解决问题中发展创新能力。
第四个环节:新课程三维目标(知识和技能、过程和方法、情感态度和价值观)从三个维度构建起具有丰富内涵的目标体系,课程运行中的每一个目标都可以与三个维度发生联系,都应该在这三个维度上获得教育价值。
六、教学设计题
17.【参考答案】
【教学目标】
知识与技能:
(1)通过生活中的例子帮助学生理解增函数、减函数及其几何意义。
(2)学会应用函数的图像理解和研究函数的单调性及其几何意义。
过程与方法:
(1)通过本节课的教学,渗透数形结合的数学思想,对学生进行辨证唯物主义的教育。
(2)通过探究与活动,使学生明白考虑问题要细致,说理要明确。
情感与态度:
(1)通过本节课的教学,使学生能理性地描述生活中的递增、递减的现象。
(2)通过生活实例感受函数单调性的意义,培养学生的识图能力和数形语言转化的能力。
【重点难点】
重点:函数单调性概念的理解及应用。
难点:函数单调性的判定及证明。
关键:增函数与减函数的概念的理解。
【教学过程】
(一)问题情境(此处省去)
(二)温故知新
(1)问题1:观察学生绘制的函数的图像(实际教学中可根据学生回答的情况而定),指出图像的变化的趋势。
观察得到:随着x值的增大,函数图像有的呈上升趋势,有的呈下降趋势,有的在一个区间内呈上升趋势,在另一区间内呈下降趋势。
(2)问题2:对“图像呈逐渐上升趋势”这句话以往是怎样描述的?
例如:研究y=x2时,我们知道,当x<0时,函数值y随x的增大而减小,当x>0时,函数值y随x的增大而增大。
对函数单调性的解释:
COPYRIGHT © 2006-2025 教师资格证考试版权
所有:育德园师